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Abstract-An experimental and numerical study has been made on convective heat transfer in coiled tubes. 
The experiments have been carried out for tube diameter/coil diameter ratios from l/100 to l/10, Prandtl 
numbers from l0 to 500 and Reynolds numbers from 20 to 4000. The heat transfer has been studied for two 
boundary conditions: for a uniform peripherally averaged heat flux and for a constant wall temperature. 
Attention has been paid to the heat transfer in the thermal entry region as well as in the fully developed 
thermal region. The results obtained and the relations proposed could be explained from and are based on 

the flow behaviour. 

NOMENCLATURE INTRODUCTION 

4 tube diameter [m] ; 

Q coil diameter [m] ; 

Dn, Dean number [ = Re(d/D)“‘] ; 
fT Weisbach friction factor ; 

Gr, Grashof number (= /3gATd3/vz); 

Gz, Graetz number (= (w)d’/az); 

h, local heat-transfer coefficient 
[W/m” “C] ; 

<hh overall heat-transfer coefficient 
[W/m’ “C] ; 

L tube length [m] ; 
NU. local Nusselt number (= hd/d); 

Nil, peripherally averaged Nusselt number ; 
(Nu), overall Nusselt number ; 

PC Prandtl number (= v/a); 

r, radial coordinate [m] ; 
Re, Reynolds number ( z (w)d/v) ; 

T, temperature [“Cl ; 

yi; 
+, dimensionless temperature ; 

mean fluid temperature [“Cl ; 
(AT), logarithmic averaged temperature 

difference [“Cl ; 
4 radial velocity [m/s] ; 
0, tangential velocity [m/s] ; 

W, axial velocity [m/s] ; 
4 axial coordinate [ml. 

Greek symbols 

2 
thermal diffusivity [m’/s] ; 
dimensionless radial coordinate; 

% dynamic viscosity [kg/m s] ; 
A thermal conductivity [W/m “C] ; 
v, kinematic viscosity [m’/s] ; 
c$, 5 +, dimensionless axial coordinate ; 

43 tangential coordinate ; 
@to heat flux [W/m’]. 

SECONDARY flow in coiled tubes as a result of centri- 
fugal forces is a well-known phenomenon. This flow 
increases the heat and mass transfer as compared with 
the values obtained for straight tubes. The secondary 
flow pattern consists of two vortices perpendicular to 
the axial flow direction heat transport will take place 
not only by diffusion in the radial direction, but also by 
means of convection. The contribution of this con- 
vective heat transport is more or less dominating, 
depending on the flow conditions and fluid properties. 
Besides, this secondary flow also accounts for a 
considerable decrease in axial dispersion as compared 
with the straight tube. Nearly all research known with 
respect to heat transfer in coiled tubes dates from after 
1950. Micheeff [2], Fostowskii [3], Kubair and 
Kuloor [4], Schmidt [5] and Shchukin [6] gave em- 
pirical relations for the overall heat-transfer coefficient 
in case of a constant wall temperature. Seban and 
McLaughlin [7], Dravid [8] and Singh and Bell 
[9] gave empirical relations for the local peripherally 
averaged heat-transfer coefficient for the fully developed 
thermal region in case of a uniform peripherally 
averaged heat flux. Mori and Nakayama [lo] have 
tried to come to an analytical’solution by analysing 
the velocity distribution and the temperature profile 
as well. More recently several numerical studies 
were made by Akiyama and Cheng [ll, 12, 131, 
Tarbell and Samuels [14], Kalb and Seader [15, 161, 
and Patankar, Pratap and Spalding [17]. 

The different authors show that the various numeri- 
cal methods do give results which are in good agree- 
ment with known experimental results. However at- 
tention has mainly been paid to situations with low 
Prandtl numbers only. 

*Present address: CTI-TN0 P.O.B. 342, Apeldoorn, 
Netherlands. 

The heat-transfer relations as given by the various 
authors [7-9, 11-13, 15, 161 show a diversity in form 
even in case of the same boundary condition. This 
leads to significant differences in calculated heat- 
transfer coefficients calculated with these relations, 
especially in case of high Prandtl and Reynolds num- 
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bers. This often renders it very difficult to make a good 

prediction for the heat transfer in practical cases. 
In general, hardly any attention has been paid to 

physical modelling from which experimental results 

could be explained or predictions made on the heat 
transfer under different conditions. The objective of 
this study was to arrive at a better understanding ofthe 

heat transfer in helical coiled tubes in case of laminal 
flow, in relation to the flow behaviour. The aim is to 
give heat-transfer relations based on both theoretical 
analysis and experiments over a wide range of Prandtl 

and Reynolds numbers and diameter ratios. Attention 
has also been paid to the effect of the boundary 

condition at the tube wall. Heat transfer experiments 

have been carried out with the same fluids and the 
same coiled pipes for two boundary conditions: ;I 
constant peripherally averaged heat flus and ;t 
uniform wall temperature. Also attentiot~ has beet) 

paid to both the heat transfer in the therm;11 entry 

region and the heat transfer in the fully dclcloped 
thermal region. 

FLOW CONSIDERATIONS 

In order to gain a better insight into the relation 

between the heat transfer and the hydrodynamics an 
extensive study has been made of the literature on 

laminar flow in coiled tubes [17]. The main con- 
clusions of this study, which are relevant for the 

explanation of the heat-transfer results arc : 
1. The hydrodynamics can be described with 

sufficient approximation by means of one charac- 

teristic dimensionless group. the Dean number: 
Dn = Re(d/D)“’ ; 

2. Three regions can be distinguished : 
(a) the region of small Dean numbers, .&I < 17. In 

this region inertia forces due to the secondary Row can 
be neglected. The dimensionless secondar) velocities 
ud/v and ud/v are proportional to Dtt”. the velocity 

distribution is satisfactorily described by the 

equations according to Dean [ I] : 
(b) the region of intermediate Dean numbers, 

17 < Dn < 100. In this region the inertia forces due to 
the secondary flow balance the viscous forces more or 
less. The dimensionless secondary velocities are to a 

good approximation proportional to Du : 
(c) the region of high Dean numbers, L)~I > 100. 

This region is characterised by a boundary layer now. 

where only in the boundary layer near the tube wall the 
viscous forces are still significant. In the core I-cgion 
outside the boundary layer the dimensionless secon- 
dary velocities are approximately proportional lo 
Dnls2. The velocity distribution is satisfactorily 

described by the equations according to Mori and 

Nakayama [lo]. 

THEORETICAL CALCULATIONS 

For the region of small Dean numbers the energy 
equation has been solved numerically, using the 
velocity distribution according to Dean 111. The 

calculations have been carried out for two conditions: 
(a) the fully developed thermal condition, in case oE 

a uniform peripherally averaged heat flux: here asym- 
ptotic heat-transfer coefficients have been calculated, 

(b) the boundary condition of ,I constant nail 
temperature; here the variations in local heat-translel- 

coefficients along the tube have been calculated 

For both situations a brief descrtption will be given 
of the numerical procedure as carried out hcrc [1x1. 

(a) Sfufionurj~ hear Wansporf in lhc /u//y dez’c~lopf~d 

fhiwnul region under the cmdifior~ of u un$ml 

pwiphera//p aceragrd w/I hcur firl\ 

The stationary process of heat transport in laminar 

Row in a coiled tube can be described by the energy 
equation : 

where 3. I’ and ~,3 and ~1, II and 1: are the axial. radial and 

tangential coordinates and velocities. respectively 
(Fig. 1 ). 1 being thermal diffusivity. 

Having the boundary condition of a uniform 

peripherally averaged heat tlux 

and a fully developed temperature profile, all tempera- 
tures will increase linearly with the axial distance 2. 
Neglecting the diffusion in the axial direction and 
assuming that ?T.ii;z is independent of z, r and 4, 
equation (I) becomes two-dimensional in r and 4. 

Using the velocity distribution according to Dean [I], 
the dimensionless velocities can be given as : 

where < = 2r,!d and F and G are functions only of the 

coordinates < and 4. 
After substitution of the dimensionless velocities LL’, 

1.’ and W’ and coordinates < and 4 = 2z!d, equation ( 1) 
can be written as: 

(1 IL)RePrPT (6) ^C ‘> 
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Table 1. 

Helix 

No. 1 
2 
3 
4 

Tube length Tube diameter Coil diameter 
(m) Cm) Cm) W 

4.5 5.10- 3 5.10- 1 1.1o-2 
5.8 1.10-Z 6.2.10-l 1.6.10-* 
5.9 1.1o-2 4.2.10- ’ 2.4.10-2 
5.5 1.10-2 1.2.10-’ 8.3.10- * 

Table 2. 

Helix dlD 

1 1.10~2 
2 1.6.10-’ 
3 2.4.10-’ 
4 8.3.10-’ 

Pr 

30-1.102 
3.10*-4.4.102 

27-4.4.102 
40-80 

Dn 

5-2.10’ 
2.5-50 

3-6.10’ 
30-8.5.10’ 

Re 

50-2.103 
20&4.10* 
20-4.103 

1.102-3.103 

Substituting T’ = T/RePr(aT/a<), e.g. (6) becomes: 

= (l-[Z). (7) 

As can be seen from equation (7), the dimensionless 
temperature distribution will be a function of the 
parameter Dn*Pr only. Since equations (3), (4) and (5) 
are restricted to low Dean numbers (Dn < 17) it 
follows that Dn*Pr is the characteristic group only in 
this region of Dean numbers. 

The peripherally averaged Nusselt number in case of 
peripherally uniform wall temperature, will be found 
from the equation: 

- 
Nu = 2RePrg (T,-(T)) = 2/(TL--(T’)). (8) 

The solution to equation (7) was quite straight- 
forward, using a radial symmetrical grid and a five- 
point central difference scheme. The resulting set of 
finite difference equations was solved by the method of 
Gauss and Seidel. 

(b) Boundary condition of a constant wall temperature 
In this case equation (1) has to be solved step by step 

in the axial (z)-direction. 
Substituting the dimensionless temperature: 

T-T,, T+ =p 
T,-T,’ (9) 

where TO is the fluid temperature at the tube entry, and 
the dimensionless axial coordinate: 

5’ = SfRePr, 

equation (1) can be written as : 

aT+ 
(1 -l’),,, = V$-+ 

(10) 

-Dn’Pr F(i, c$)% + G([, d)$& . 
1 

(11) 

Equation (4) was solved for every step A[+, using the 
Crank-Nicholson scheme for finite differences in the 

axial direction. The Nusselt number could be formed 
by the relation: 

2aT+ 
Nu = -ai i_l(T,f -(T+))-‘. (12) 

The grid used for the calculations consisted of (91) grid 
points, covering half a tube cross-section; 10 steps in 
the radial and 8 steps in the tangential direction. 
Owing to the occurrence of numerical instability, the 
numerical calculations could be made to Dn’Pr values 
of up to about 6000. 

It is useful to mention here that since the equations 
of mass transport and heat transport are the same, a 
more or less similar analysis can be made to calculate 
the axial dispersion in helical coiled tubes. This has 
been done in a previous publication [19]. 

EXPERIMENTAL SET UP 

The heat-transfer experiments were carried out for 
two boundary conditions. First, the boundary con- 
dition of a uniform peripherally averaged heat flux, 
which was established by electric heating of the tubes. 
Secondly, the condition of an almost uniform wall 
temperature, which was established by heating with 
condensing steam. Both experimental set ups will be 
described. 

(a) Local heat-transfer measurement with the 
boundary condition of a uniform averaged heatflux 

The experiments were carried out with electrically 
heated coiled stainless steel tubes. The heating was 
obtained by using the tubewall as an electrical re- 
sistance. The averaged heat flux through the tube wall 
was in the range of 103-4.103 W/m’. The tempera- 
ture increase of the fluid was within the range of 5°C. 
Owing to these small temperature differences, the 
viscosity differences to 10°C were within the range of 
40%. The experiments were carried out with four 
different coiled tubes (Table 1). The liquids used 
were water glycerol mixtures. The range of Re, Pr and 
Dn numbers in which the experiments were carried out 
are given in Table 2. 
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Table 3. Dimensions of tested coils 

Helix 
Tube length Tube diameter Coil diameter 

(m) (m) (m) d/D 

No. 1 5.1 1.10 2 1.5.10 ’ 6.510 - 
2 5.8 l.lO_’ J,?.lW ’ 2.410 . 
3 5.5 S.lW 3 5.10~ ’ I.10 

I , $I,,II / I,, 

li Dn2Pr -40 

. on2 Pr =400 

1 IIn2 Pr =730 

0 D”2 Pr -1000 

. on2 PI = 2000 

. Dn2 Pr =3960 

i On2 Pr =5600 

R 

I 

‘1 

FIG. 2. Calculated values of Nu as a function of Gz with boundary condition i?,. = constant. 

Since the heat input per unit length of the tube is 
constant, the mean fluid temperature will rise linearly 
and is known in any axial place by measuring the inlet, 
and outlet temperatures of the fluid. The local heat- 
transfer coefficients were determined by means of 
equation (8) by measuring local wall temperatures. 

The wall temperatures were measured with ther- 
mocouples at the outside of the tube wall, which was 
totally insulated by glass wool. The wall temperature 
was measured in various places in the axial as well as in 
the circumferential direction. The estimated accuracy 
of the local heat-transfer coefficients was lo- 15%. 

(b) Overall heat-transfer measurement with the 

boundary condition of uniform wall temperature 
The constant wall temperature of 100°C established 

with condensing steam of 1 bar. The coiled tubes were 
placed in a closed stainless steel vessel, of which the 
steam pressure was regulated within 0.1 bar, and the 
steam temperature within 3°C. To determine a mean 
wall temperature the temperature was measured with 
four steam-insulated thermocouples in several places 
on the tube wall. The liquids used were two silicon oils 
with different viscosities, which were little temperature- 

dependent and a Shell-oil Vitrea 3 1, which had a more 
temperature-dependent viscosity. The experiments 
were carried out with three coiled tubes (Table 3). 

The overall heat-transfer coefficients were calcu- 
lated from the thermal balance: 

Where (T),, is the averaged outlet temperature, (T),, 
the averaged inlet temperature and (AT),,, the logar- 
ithmic averaged temperature difference between tube 
wall and fluid : 

The accuracy of the overall heat-transfer coefficients 
was estimated to be lo-- 2Oq;,. 

REX LTS 

(a) Numericul results ji,r small Dean numbers 

(Dn c 17) 
The results are given in Figs. 2 and 3. Figure 2 shows 

the results of the calculations for the boundary con- 
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II 
lo2 lo3 104 

- ,,,?Pr 

FIG. 3. Calculated values of Nu as a function of Dn’Pr. 

NU 

t : 

FIG. 4. Measured local k-numbers for 4 = x/2 and q5 = -z/2 as a function of Gz. 

dition of a con&ant wall temperature, the peripherally 
averaged Nusselt number as a function of the Graetz 
number. The oscillating character of the curves is due 
to the effect of the secondary flow, which increases with 
increasing value of Dn’Pr. 

‘The “wavelength” of these oscillations is directly 
related to the ratio between the secondary velo- 
cities and axial velocity; this will be discussed in more 
detail under (b). 

Figure 3 shows the asymptotic values of the per- 
ipherally averaged Nusselt number for the fully de- 
veloped thermal region, both for the boundary con- 
dition of bik = constant and T, = constant. These 
results fairly well agree with the numerical results of 
Akiyama and Cheng [ll, 12, 131. However, as men- 
tioned already, only in the region of small Dean 
numbers can the heat transfer be characterised ex- 
clusively by the group Dn’Pr. This aspect has not been 
mentioned by Akiyama and Cheng. It can be seen from 
Fig. 3 that the ‘effect of the boundary condition 
becomes almost negligible with increasing value of 
Dn’Pr unlike heat transfer in straight tubes, the heat 
transfer in case @, = constant appears to become even 
a little lower than in case T, = constant. Owing to the 

occurrence of free convection it was not possible to 
check these results with experimental ones in this 
particular region of Dn’Pr values. The comparison 
with experimental results in an adjacent region will be 
discussed below. 

(b) Experimental results with the boundary condition 
of a uniform peripherally averaged heatjux 

An example ofthe results obtained for the local heat- 
transfer coefficient along the circumference of the 
helical tube is given in Fig. 4. The Nusselt numbers at 
the outside of the helix (4 = n/2) and at the inside (4 
= -n/2) are given here as a function of the Graetz 
number. The variations in heat transfer at the outside 
(q!~ = n/2) clearlyreflect the oscillating character due to 
the circulating secondary flow. After every new circu- 
lation fluid of a higher temperature flows to the outer 
tube wall, which leads to a sudden decrease in 
temperature gradient at the tube wall and therefore a 
decrease in heat-transfer coefficient. 

Since the thermal boundary layer at the outside of 
the helix (4 = n/2) is thin, the heat transfer is very 
sensitive to temperature changes of the fluid, which is 
contrary to the inside of the helix (4 = -n/2), where 
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the thermal boundary layer is much thicker. 

The axial distance z,. where the heat transfer drops 
suddenly for the first time at r$ = n,Q, can be roughly 
related to the ratio of mean axial and secondary 
velocity : 

Since the fluid temperature at the outer tube wall will 

change when the fluid has crossed the tube cross- 
section along the symmetry line. Equation (15) can be 
written as: 

(u)d (w)d 11 
1’ 

(16) 
1’ z, 

As pointed out before, the dimensionless secondary 

velocity (u)d/v is to a first approximation a function of 
the Dean number. In Fig. 5 the experimentally de- 

Fm. 5. Comparison between theoretical relations and ex- 
perimentally determined secondary flow. 

termined values of Red/z, using the relation (u)d/v 
N 10-2DnZ derived from the velocity distribution 

according to Dean [l] and (u)d/v N 2Dn”’ derived 
from the results of Mori and Nakayama [lo]. Their 

good agreement shows that these analytically calcu- 
lated velocity distributions give a good approximation 
for small and large Dean numbers respectively Fig. 6 
gives some of the results for the peripherally averaged 
Nusselt numbers, calculated from the local values, as a 
function of the Graetz number. For the thermal entry 
region an empirical equation has been derived, which 
apart from the strong oscillating curve for very short 
tube length was within 20% in agreement with these 
experimental results: 

-_ 
Nu, = (0.32+3d/D)Re”~5Pro.3.7 

x (Qz)0.14+o.80, (17) 

For 20 < Dn cc 8.3 x lo’, 30 < Pr < 4.5 x 10’ and 1 
x 10m2 < d/D < 8 x lo-‘. For the fully developed 

thermal region it appeared to be possible to correlate 
the peripherally averaged Nusselt number with the 

dimensionless axial velocity gradient : 

6 1s) 

Where / 1s the Weisbach function factor. This result I\ 
shown in Fig. 7. All restilts for D,I 1 20 fitted withtn 
JO”;, the relation: 

Instead of equation (19) two asymptotic car- 

relations were derived for the Nusselt number a:, ;I 
function of Re, Pr and d/D : 

for 20 iI DU < 1 x IO-! 

,Vrr = 0.9(Rc’Pr)“h 

for 1 x IO” < On < 8.3 x IO’ 

I?Ol 

Ntr = 0.7Re”.s-3Pr’ “(~/ID)” “-‘. (21 i 

From equations (20) and (21) it can be seen that the 
effect of the ratio d/D on the Nusselt number was 
negligible for 20 < Dn < I x 10’ and only very small 

for Dn > 1 x 102. The result found experimentally 

(equation 19) that the peripherally averaged Nusselt 
number can be correlated with the dimensionless axial 
velocity gradient at the tube wail (proportional to ,f ) 
can be explained from the analogy with the Leveque 
equation for the heat transfer in case of a constant 
shear stress layer. Levique predicts for that case a heat- 

transfer coefficient proportional to (i*i&)‘,“. 
Since fluid is streaming continuously from the tube 

centre to the tube wall and only for a certain period of 
time along the tube wall during each circulation, the 
heat transfer will remain dependent on the velocity 

gradient at the tube wall, even in the fully developed 
thermal region. 

Though the exact proportionality of the Nusseh 
number to (?\z’/t?r)1’3 was not found, the correlation 

between (ZW/&) and Nu was found to be consistent 
over the total range of Dean numbers for Dn > 20. 

The results for Dn < 20 are shown in Fig. 8. from 

which one can see that they match the numerical 
results fairly well. An empirical relation 

Nu = I,7(Dft’Pr)1 ” r22) 

was derived for Dn < 20 and (Dn’Pr)’ ’ 1 1 x 10’. 
Two main conclusions can be drawn from the results 

as described by equations (19) -(22). In the first place it 
appeared clearly from the experiments that the per- 
ipherally averaged asymptotic Nusselt number for the 
fully developed thermal region can be described as a 
function of Dn2Pr in case of small Dean numbers only. 
For Dn > 20 the Reynolds and dJD dependency of the 
asymptotic Nusselt numbers appeared not to be 
described by the Dean number as suggested by Dravid 
[g], Akiyama and Cheng [ 11-131 and Kalb and 

Seader [ 15, 161. 
Secondly the Prandtl dependency of the asymptotic 

Nusselt number appeared to be described by Pr”” for 
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to’ 
lo’ 10" 10” 

------) Gr 

kc) 

FIG. 6. Measured values ofz as a function 0fG.z. 

all excrements, which is in agreement with the ex- vafue, a rough relation has been found: 
perimental results of &avid [8]. This was not found 
by Seban and ~c~angh~~~ [?I and Beii and Singh z/d $2~(~/~~-0.5(P~~o,~ (23) 

[9], who both give a Prandtl dependency of Wi3, ar 
which was found from our experiments only to be the 
case in the thermal entry region. Ga > 5 x IQ-VM+s. r, (24) 

Finally, for the length of the thermal entry regjon, From equatian (23) it can be concluded that the 
which has been defined as the region where the heat thermal entry bngfh is mainly determined by a certain 
transfer differs more than f5yQ from the asymptotic number of secandary flow circulations and little by the 
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! I 1 

i ,, &--Ho 
‘$ 

--cl Eq.19 

d/D~10-2 Re 2,8.102-2,4.103 on28-2,410’ 

NT;pr-‘% or 20 -450 o 2,4.Kj2 1,3.102- 3,9.103 20 -6,O.ld 

v 8,316’ 2,l.lcK 1,9.10” 60-6,0.102 

i 

loo I I I,,>,, 1 I,,,11 
lo4 lo5 lo6 

FIG. 7. Measured asymptotic Nu numbers as a function offW. 

Pr 260-450 

Eq.22 
-=T_& 

numerical 

7 C--0 
_/’ 

,,/ 
,/ 0 dlD:lb’ 

. dlD.l,6l~’ 

.dlD-2,4.1d2 

230° / / ,/,/I/ 

ld 
2 

10 

FIG. 8. Measured asymptotic Nu numbers as a function of Dn’Pr for Dn < 20. 

CI d,D:6,5.1ij2 L,D,5,7.102 

.d,D,2,4362 ~0,5,8.10~ 

i 

FIG. 9. Measured values of (Nu) as a function of (Re),,, for different values of d/D 
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- mTiL40’C 

VTi,60°C 

FIG. 10. Measured values of (Nu),,, as a function of (Re),,, for different inlet temperatures. 

effect of thermal diffusivity, as it is in straight tubes. 
Depending on the values of Re, Prandtl and d/D the 
thermal entry length was 20-90x smaller than in 
straight tubes. 

(c) Experimental results with the boundory condition 
of a constant wall temperature 

The overall Nusselt numbers obtained have been 
compared with equation (17) integrated over the tube 
length: 

x Re0.Jpr0.33(d/~)0.14+0.8d/D (25) 

This relation however neglects non-isoviscous effects. 
The results for different oils are given in Figs. 9 and 10. 
It appeared that the effect of the non-isoviscous flow 
on the heat transfer could not be described by the 
Sieder-Tate connection ((~J)/~,JO.~~. 

The temperature depending appeared to be larger 
than predicted by this correction. As can be seen from 
Fig. 10, the results are clearly affected by the fluid inlet 
temperature. On the other hand, no significant differ- 
ences were found between the silicon oils and the vitrea 
oil with a more temperature dependent viscosity. In 
case of not too large temperature differences (To 
= 60°C) the overall Nusselt numbers obtained show 
reasonable agreement with equation (25). Therefore it 
may be concluded that there is little effect of the kind of 
boundary condition on the heat transfer. However, the 
heat-transfer coefficients will be strongly effected by 
the absolute temperature differences between tube wall 
and fluid. 

SUMMARY AND CONCLUSIONS 

From the results of this study it has appeared that 
only for low values of the Dean number (Dn < 20) the 
dimensionless group Dn’Pr is characteristic for the 
heat transfer. 

For Dn > 20 it has been shown that the heat- 
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transfer coefficient in the fully developed thermal 
region is directly related to the mean axial shear rate at 
the tube wall. For 20 < Dn < 100 it is shown that the 
effect of the value of the diameter ration d/D can be 
neglected for the fully developed thermal region, the 
Nusselt number can be described as a function of the 
group Re’Pr only. 

For all cases with [Dn2Pr]‘/’ > 100 the Nusselt 
number in the fully developed thermal region is 
proportional to PF. 

For the thermal entry region the Prandtl de- 
pendency of the Nusselt number appeared to be better 
described by IV”‘. It has been found that the length of 
the thermal entry region is mainly determined by a 
certain number of secondary flow circulation nec- 
essary to establish the temperature distribution. 

A comparison of the overall heat-transfer coef- 
ficients in case of a constant wall temperature and a 
constant averaged heat flux shows the effect of the 
boundary condition to be small, provided the flow can 
be considered as isoviscous. Thereby it has been found 
that the non-isoviscous flow effects on the heat transfer 
is larger than predicted by the Sieder-Tate correction. 
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CONVECTION THERMIQUE LAMINAIRE DANS DES TUBES EN SERPENTIN 

Rbsum&lI s’agit dune etude experimentale et thtorique de la convection thermique dans les tubes cintres 
helicoldalement. Les experiences sont relatives a des rapports du diamttre du tube au diametre du serpentin 
variant de l/l00 a l/IO, a un nombre de Prandtl allant de 10 a 500 et a des nombres de Reynolds compris entre 
20 et 4000. Le transfert de chaleur a ttt Ctudii pour deux conditions aux limites: avec un flux thermique 
circonferentiel moyen constant et avec une temperature parittale constante. L’attention a ete portee sur le 
transfert thermique dans la region dent& aussi bien que dam la region de I’etablissement de regime 
thermique. Les rtsultats obtenus et les formules proposees sent expliquees en relation avec la configuration 

de I’ecoulement 

LAMINAR KONVEKTIVER WARMEUBERGANG IN SPIRALFGRMIG 
GEWICKELTEN ROHREN 

Zusammenfassung--Eine experimentelle und theoretische Studie zur Bestimmung des konvektiven 
Warmeiibergangs in Spiralrohren wurde durchgefiihrt. Die Versuche wurden fiir 
Rohrdurchmesser/Wirbeldurchmesser-Verhlltnisse von l/l00 bis l/10, Prandtl-Zahlen von 10 bis 500 und 
Reynolds-Zahlen von 20 bis 4000 durchgefiihrt. Der Warmeiibergang wurde fur zwei Randbedingungen 
untersucht, einerseits fur einen gleichfijrmigen, in Umfangsrichtung gemittelten Wlrmestrom und anderer- 
seits fur konstante Wandtemperatur. Besonders beachtet wurde der Warmeiibergang sowohl in der 
thermischenEinlaufzone als such im Gebiet thermisch vollstandig ausgebildeter Stromung. Die gewonnenen 
Ergebnisse und die vorgeschlagenen Beziehungen konnten aus dem Stromungsverhalten erkllrt bzw. daraus 

abgeleitet werden. 

HEPEHOC TEHJIA .JlAMMHAPHOH KOHBEKUME:H B ClTMPAnbHblX TPY6KAX 

ArmoTaqmi - flposeaeuo 3Kcnep~h4et4Ta:lbHoe5i qMc:leHHoeMccne~o6aHMe KoHBeKTkifsHoronepeHoca 

Tenna B cn54panbHbix Tpy6Kax.3KcnepwMeH-rbrnpoeonMnticb npM OTHOLUeHMRX 3HaMeTpa Tpy6KH K 

LtHaMeTpy CrlMpaJlM PaBHblX, l/100-l/IO, ‘Incnax Hparmrnn B ariana3one 10~500 M qric;tax 
Peilttonbnca B nwanasoiie 20-4000. Hccneposancn Tennoo6MeH D~R n~yx rpaHn’1Hbtx ycnosttR: 
O~HOpO~HOrO n0 0Kpy)ICHOCTM Te"nOBOrO nOTOKa H nOCTOflHHOii TeMnCpaTypbl CTeHKM. OCOEiOe 

nmiMant+e o6pamanocb Ha nepeHoc Tenna 13 TenxoBoM HayanbHoM y9acrke. a Takxe u o6nacrn 
CTa6H,W,3k,pOBaHHOrO TCnnOO6MeHa. nOJ,yYeHHblC pe3ynbTaTbl M COOTHOLUeHMR MO~K110 Ohr(CHMTb. 

14cXonR ~3 xapaKTepa TeqeriHfl. 


