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Abstract-—An experimental and numerical study has been made on convective heat transfer in coiled tubes.
The experiments have been carried out for tube diameter/coil diameter ratios from 1/100 to 1/10, Prandtl
numbers from 10 to 500 and Reynolds numbers from 20 to 4000. The heat transfer has been studied for two

boundary conditions: for a uniform peripherally averaged heat flux and for a constant wall temperature.

Attention has been paid to the heat transfer in the thermal entry region as well as in the fully developed
thermal region. The results obtained and the relations proposed could be explained from and are based on
the flow behaviour.
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NOMENCLATURE

tube diameter [m];

coil diameter [m];

Dean number [ = Re(d/D)"*];
Weisbach friction factor ;
Grashof number (= fgATd>/v?);
Graetz number (= (w)d*/az);
local heat-transfer coefficient
[W/m?°C];

overall heat-transfer coefficient
[W/m?°C];

tube length [m];

local Nusselt number (= hd/A);

peripherally averaged Nusselt number ;

(Nu), overall Nusselt number ;

Pr, Prandtl number (= v/x);
r radial coordinate [m];
Re, Reynolds number (={w)d/v);
T, temperature [°C];
T, T*, dimensionless temperature;
(T>, mean fluid temperature [°C];
(AT), logarithmic averaged temperature
difference [°C];

u, radial velocity [m/s];
v, tangential velocity [m/s];
w, axial velocity [m/s];
z, axial coordinate [m].

Greek symbols
a, thermal diffusivity [m?/s];
Z, dimensionless radial coordinate ;
7 dynamic viscosity [kg/ms];
A thermal conductivity [W/m °C];
v, kinematic viscosity [m?/s];
¢, &*, dimensionless axial coordinate ;
&b, tangential coordinate ;
@;, heat flux [W/m?].

*Present address: CTI-TNO P.O.B. 342, Apeldoorn,

Netherlands.

INTRODUCTION

SECONDARY flow in coiled tubes as a result of centri-
fugal forces is a well-known phenomenon. This flow
increases the heat and mass transfer as compared with
the values obtained for straight tubes. The secondary
flow pattern consists of two vortices perpendicular to
the axial flow direction heat transport will take place
not only by diffusion in the radial direction, but also by
means of convection. The contribution of this con-
vective heat transport is more or less dominating,
depending on the flow conditions and fluid properties.
Besides, this secondary flow also accounts for a
considerable decrease in axial dispersion as compared
with the straight tube. Nearly all research known with
respect to heat transfer in coiled tubes dates from after
1950. Micheeff [2], Fostowskii [3], Kubair and
Kuloor [4], Schmidt [5] and Shchukin [6] gave em-
pirical relations for the overall heat-transfer coefficient
in case of a constant wall temperature. Seban and
McLaughlin [7], Dravid [8] and Singh and Bell
[9] gave empirical relations for the local peripherally
averaged heat-transfer coefficient for the fully developed
thermal region in case of a uniform peripherally
averaged heat flux. Mori and Nakayama [10] have
tried to come to an analytical solution by analysing
the velocity distribution and the temperature profile
as well. More recently several numerical studies
were made by Akiyama and Cheng [11, 12, 13],
Tarbell and Samuels [14], Kalb and Seader [15, 16],
and Patankar, Pratap and Spalding [17].

The different authors show that the various numeri-
cal methods do give results which are in good agree-
ment with known experimental results. However at-
tention has mainly been paid to situations with low
Prandtl numbers only.

The heat-transfer relations as given by the various
authors [7-9, 11-13, 15, 16] show a diversity in form
even in case of the same boundary condition. This
leads to significant differences in calculated heat-
transfer coefficients calculated with these relations,
especially in case of high Prandtl and Reynolds num-
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bers. This often renders it very difficult to make a good
prediction for the heat transfer in practical cases.

In general, hardly any attention has been paid to
physical modelling from which experimental results
could be explained or predictions made on the heat
transfer under different conditions. The objective of
this study was to arrive at a better understanding of the
heat transfer in helical coiled tubes in case of laminar
flow, in relation to the flow behaviour. The aim is to
give heat-transfer relations based on both theoretical
analysis and experiments over a wide range of Prandtl
and Reynolds numbers and diameter ratios. Attention
has also been paid to the effect of the boundary
condition at the tube wall. Heat transfer experiments
have been carried out with the same fluids and the
same coiled pipes for two boundary conditions; a
constant peripherally averaged heat flux and a
uniform wall temperature. Also attention has been
paid to both the heat transfer in the thermal entry
region and the heat transfer in the fully developed
thermal region.

FLOW CONSIDERATIONS

In order to gain a better insight into the relation
between the heat transfer and the hydrodynamics an
extensive study has been made of the literature on
laminar flow in coiled tubes [17]. The main con-
clusions of this study, which are relevant for the
explanation of the heat-transfer results are:

1. The hydrodynamics can be described with
sufficient approximation by means of one charac-
teristic dimensionless group, the Dean number:
Dn = Re(d/D)"?:

2. Three regions can be distinguished:

(a) the region of small Dean numbers, Dn < 17. In
this region inertia forces due to the secondary flow can
be neglected. The dimensionless secondary velocities
ud/v and vd/v are proportional to Dn®. the velocity
distribution is satisfactorily described by the
equations according to Dean [1]:

(b} the region of intermediate Dean numbers,
17 < Dn < 100. In this region the inertia forces due to
the secondary flow balance the viscous forces more or
less. The dimensionless secondary velocities are (o a
good approximation proportional to Di;

(c) the region of high Dean numbers, Dn > 100.
This region is characterised by a boundary layer flow,
where only in the boundary layer near the tube wall the
viscous forces are still significant. In the core region
outside the boundary layer the dimensionless secon-
dary velocities are approximately proportional to
Dn'?. The velocity distribution is satisfactorily
described by the equations according to Mori and
Nakayama [ 10].

THEORETICAL CALCULATIONS
For the region of small Dean numbers the energy
equation has been solved numerically, using the
velocity distribution according to Dean [1}]. The
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calculations have been carried out for two conditions:

(a) the fully developed thermal condition, in case of
a uniform peripherally averaged heat flux ; here asym-
ptotic heat-transfer coefficients have been calculated ;

(b) the boundary condition of a constant wall
temperature ; here the variations in local heat-transter
coefficients along the tube have been calculated.

For both situations a brief description will be given
of the numerical procedure as carried out here [18].

(a) Stationary heat transport in the fully developed
thermal region under the condition of a uniform
peripherally averaged well heat flux

The stationary process of heat transport in laminar
flow in a coiled tube can be described by the energy
equation:

"‘T -
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where =, r and ¢ and w, v and v are the axiai, radial and
tangential coordinates and velocities, respectively
(Fig. 1),  being thermal diffusivity.
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Fia. 1. Coordinates.

Having the boundary condition of a uniform
peripherally averaged heat flux:

~

d, d¢ = constant 2)
v O

and afully developed temperature profile, all tempera-
tures will increase linearly with the axial distance :.
Neglecting the diffusion in the axial direction and
assuming that é7T/0z is independent of z, r and ¢,
equation (1) becomes two-dimensional in r and ¢.
Using the velocity distribution according to Dean [ 1},
the dimensionless velocities can be given as:

u d

= U = Re P ) 3
W= gy T Rep Fie e )
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w , .
el R e | (5)
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where { = 2r/d and F and G are functions only of the
coordinates { and ¢.

After substitution of the dimensionless velocities u',
¢ and w’ and coordinates { and ¢ = 2z/d, equation (1}
can be written as:

- LT T

Ve, T —Dn*Pr F(ss(f))'(':'; + (l(g.d))'i;”’

E a7 3
T

{1 ) RePrL . (6)
{




Laminar convective heat transfer in helical coiled tubes

1199

Table 1.
Tube length Tube diameter  Coil diameter
Helix (m) (m) (m) d/D
No. 1 45 5.1073 5.1071 1.10°2
2 58 1.1072 6.2.107! 1.6.1072
3 59 1.1072 421071 2410‘2
4 5.5 1.1072 1.2.1071 83.1072
Table 2.
Helix d/D Pr Dn Re
1 1.1072 30-1.10? 5-2.10? 50-2.10°
2 1.6.1072 3.102-4.4.10? 2.5-50 20-4.10?
3 24,1072 27-4.4.10% 3-6.102 20-4.10°
4 83.1072 40-80 30-8.5.10% 1.102-3.10°

Substituting 7' = T/RePr(0T/3¢), e.g. (6) becomes:

T/
+GC9) 55 ¢]
== (1)

As can be seen from equation (7), the dimensionless
temperature distribution will be a function of the
parameter Dn?Pr only. Since equations (3), (4) and (5)
are restricted to low Dean numbers (Dn < 17), it
follows that Dn?Pr is the characteristic group only in
this region of Dean numbers.

The peripherally averaged Nusselt number in case of
peripherally uniform wall temperature, will be found
from the equation:

Vi, T — DnzPr[F(C 4;)a

Nu = 2RePr—— or
74
The solution to equation (7) was quite straight-
forward, using a radial symmetrical grid and a five-
point central difference scheme. The resulting set of
finite difference equations was solved by the method of
Gauss and Seidel.

/(T (T3)=2/(T,—<T")). ()

(b) Boundary condition of a constant wall temperature
In this case equation (1) has to be solved step by step
in the axial (z)-direction.
Substituting the dimensionless temperature:

T-T,
T )

where T, is the fluid temperature at the tube entry, and
the dimensionless axial coordinate:

T =

EY = E/RePr, (10)
equation (1) can be written as:
oT™
(A=) 5z =V, T
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Equation (4) was solved for every step AZ*, using the
Crank~—Nicholson scheme for finite differences in the

axial direction. The Nusselt number could be formed
by the relation:

20T+

oL -1
The grid used for the calculations consisted of (91) grid
points, covering half a tube cross-section; 10 steps in
the radial and 8 steps in the tangential direction.
Owing to the occurrence of numerical instability, the
numerical calculations could be made to Dn?Pr values
of up to about 6000.

It is useful to mention here that since the equations
of mass transport and heat transport are the same, a
more or less similar analysis can be made to calculate
the axial dispersion in helical coiled tubes. This has
been done in a previous publication [19].

Nu= — (T, —<T*»)™. (12)

EXPERIMENTAL SET UP

The heat-transfer experiments were carried out for
two boundary conditions. First, the boundary con-
dition of a uniform peripherally averaged heat flux,
which was established by electric heating of the tubes.
Secondly, the condition of an almost uniform wall
temperature, which was established by heating with
condensing steam. Both experimental set ups will be
described.

(a) Local heat-transfer measurement with the
boundary condition of a uniform averaged heat flux
The experiments were carried out with electrically
heated coiled stainless steel tubes. The heating was
obtained by using the tubewall as an electrical re-
sistance. The averaged heat flux through the tube wall
was in the range of 10°-4.10* W/m2. The tempera-
ture increase of the fluid was within the range of 5°C.
Owing to these small temperature differences, the
viscosity differences to 10°C were within the range of
409;. The experiments were carried out with four
different coiled tubes (Table 1). The liquids used
were water glycerol mixtures. The range of Re, Pr and
Dn numbers in which the experiments were carried out
are given in Table 2.



1200

L. A. M. JansseN and C. J. HOOGENDOORN

Table 3. Dimensions of tested coils

Tube length Tube diameter  Coil diameter
Helix (m) (m) (m) d;D
No. | 5.7 1.10 1510 6.5.1077
2 5.8 1.10°* 42107 241077
3 55 5107 ¢ 51071 110 ¢
2
10 T T T T T T l—r T T T 1T B
: s Dn?Pr-40
L s Dn?pr=400
- i Dn2 pr =730
L o Dn?Pr=1000

[ Dn2 Pr=2000
] Dn2 Pr=3960
7 D2 Pr =5600

366~ - - — —— — Nu straight tube

#

Jllll | S I W S T S |

1 I ! | It

Since the heat input per unit length of the tube is
constant, the mean fluid temperature will rise linearly
and is known in any axial place by measuring the inlet,
and outlet temperatures of the fluid. The local heat-
transfer coefficients were determined by means of
equation (8) by measuring local wall temperatures.

The wall temperatures were measured with ther-
mocouples at the outside of the tube wall, which was
totally insulated by glass wool. The wall temperature
was measured in various places in the axial as well as in
the circumferential direction. The estimated accuracy
of the local heat-transfer coefficients was 10-15%.

(b) Overall heat-transfer measurement with the
boundary condition of uniform wall temperature
The constant wall temperature of 100°C established
with condensing steam of 1 bar. The coiled tubes were
placed in a closed stainless steel vessel, of which the
steam pressure was regulated within 0.1 bar, and the
steam temperature within 3°C. To determine a mean
wall temperature the temperature was measured with
four steam-insulated thermocouples in several places
on the tube wall. The liquids used were two silicon oils
with different viscosities, which were little temperature-

2 3

10 10

dependent and a Shell-oil Vitrea 31, which had a more
temperature-dependent viscosity. The experiments
were carried out with three coiled tubes (Table 3).

The overall heat-transfer coefficients were calcu-
lated from the thermal balance:

ST T
(Nu),,, = i(RePr) ;1* <\T</AT>§]£)O - (13

Where (T »,, is the averaged outlet temperature, (T >,
the averaged inlet temperature and (AT ,,, the logar-
ithmic averaged temperature difference between tube
wall and fluid:

Ty =<0~ (hoy=<T1)

T&uf (T J0
T, — (T %

Wy

(AT = (14)

The accuracy of the overall heat-transfer coefficients
was estimated to be 10--20%,.

RESULTS

(a) Numerical results for small Dean numbers

(Dn < 17)
The results are given in Figs. 2 and 3. Figure 2 shows
the results of the calculations for the boundary con-
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dition of a constant wall temperature, the peripherally
averaged Nusselt number as a function of the Graetz
number. The oscillating character of the curves is due
to the effect of the secondary flow, which increases with
increasing value of Dn?Pr.

‘The “wavelength” of these oscillations is directly
related to the ratio between the secondary velo-
cities and axial velocity ; this will be discussed in more
detail under (b).

Figure 3 shows the asymptotic values of the per-
ipherally averaged Nusselt number for the fully de-
veloped thermal region, both for the boundary con-
dition of &}, = constant and T,, = constant. These
results fairly well agree with the numerical results of
Akiyama and Cheng [11, 12, 13]. However, as men-
tioned already, only in the region of small Dean
numbers can the heat transfer be characterised ex-
clusively by the group Dn?Pr. This aspect has not been
mentioned by Akiyama and Cheng. It can be seen from
Fig. 3 that the .effect of the boundary condition
becomes almost negligible with increasing value of
Dn?Pr unlike heat transfer in straight tubes, the heat
transfer in case @”, = constant appears to become even
a little lower than in case T,, = constant. Owing to the

occurrence of free convection it was not possible to
check these results with experimental ones in this
particular region of Dn?Pr values. The comparison
with experimental results in an adjacent region will be
discussed below.

(b) Experimental results with the boundary condition
of a uniform peripherally averaged heat flux

An example of the results obtained for the local heat-
transfer coefficient along the circumference of the
helical tube is given in Fig. 4. The Nusselt numbers at
the outside of the helix (¢ = n/2) and at the inside (¢
= —m/2) are given here as a function of the Graetz
number. The variations in heat transfer at the outside
(¢ = m/2)clearlyreflect the oscillating character due to
the circulating secondary flow. After every new circu-
lation fluid of a higher temperature flows to the outer
tube wall, which leads to a sudden decrease in
temperature gradient at the tube wall and therefore a
decrease in heat-transfer coefficient.

Since the thermal boundary layer at the outside of
the helix (¢ = m/2) is thin, the heat transfer is very
sensitive to temperature changes of the fluid, which is
contrary to the inside of the helix (¢ = —n/2), where
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the thermal boundary layer is much thicker.

The axial distance z,, where the heat transfer drops
suddenly for the first time at ¢ = n/2, can be roughly
related to the ratio of mean axial and secondary
velocity:

B W)

~ . 15
d ()

Since the fluid temperature at the outer tube wall will
change when the fluid has crossed the tube cross-
section along the symmetry line. Equation (15) can be
written as:

Supd  wod d

v V

(16)
As pointed out before, the dimensionless secondary
velocity (uyd/vis to a first approximation a function of
the Dean number. In Fig. 5 the experimentally de-
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10
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F1G. 5. Comparison between theoretical relations and ex-
perimentally determined secondary flow.

termined values of Red/z; using the relation (u)d/v
~ 107 2Dn? derived from the velocity distribution
according to Dean [1] and (udd/v = 2Dn"'* derived
from the results of Mori and Nakayama [10]. Their
good agreement shows that these analytically calcu-
lated velocity distributions give a good approximation
for small and large Dean numbers respectively Fig. 6
gives some of the results for the peripherally averaged
Nusselt numbers, calculated from the local values, as a
function of the Graetz number. For the thermal entry
region an empirical equation has been derived, which
apart from the strong oscillating curve for very short
tube length was within 209 in agreement with these
experimental results:

Nu, = (0.32+3d/D)Re® 5 Pro-3
x (d/z (17
For 20 < Dn < 8.3 x10%, 30 < Pr < 4.5%x10? and 1
x 1072 < d/D < 8% 1072 For the fully developed

thermal region it appeared to be possible to correlate
the peripherally averaged Nusselt number with the

)O.l4+(}.8d,’D
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dimensionless axial velocity gradient:

Ao g2
ow d* oy
— =1 fRe*.

. _ (18)
or oy

Where fis the Weisbach function factor. This result is

shown in Fig. 7. All results for Dn > 20 fitted within
10%, the relation:

Nu = 0.43(fRe*)*-20Prt o {19}

For 20 < Dn < 8.3 x10% 20 < Pr < 45 x 10 and |
x1072 < d/D < 831072

Instead of equation (19) two asymptotic cor-
relations were derived for the Nusselt number as &
function of Re, Pr and d/D:

for 20 < Dn < 1 x 10?

Nu = 0.9(Re*Pr)!® {203
for I x 102 < Dn < 8.3 x 102
Nu = 0.TRe" 3 Priio(d; D)7 20

From equations (20} and (21) 1t can be seen that the
effect of the ratio d/D on the Nusselt number was
negligible for 20 < Dn < 1 x 10* and only very small
for Dn> 1 x10% The result found experimentally
(equation 19) that the peripherally averaged Nusselt
number can be correlated with the dimensionless axial
velocity gradient at the tube wall (proportional to f)
can be explained from the analogy with the Lévéque
equation for the heat transfer in case of a constant
shear stress layer. Leveque predicts for that case a heat-
transfer coefficient proportional 1o {éw/cr)"?.

Since fluid is streaming continuously from the tube
centre to the tube wall and only {or a certain period of
time along the tube wall during each circulation, the
heat transfer will remain dependent on the velocity
gradient at the tube wall, even in the fully developed
thermal region.

Though the exact proportionality of the Nusselt
number to (dw/dr)!’® was not found, the correlation
between (0w/dr) and Nu was found to be consistent
over the total range of Dean numbers for Dn > 20.

The results for Dn < 20 are shown in Fig. 8, from
which one can see that they match the numerical
results fairly well. An empirical relation

Nu = 1.7(Dn?Pryte 122)

was derived for Dn < 20 and (Dn*Pr)t? > 1 x 102,

Two main conclusions can be drawn from the results
as described by equations (19)-(22). In the first place it
appeared clearly from the experiments that the per-
ipherally averaged asymptotic Nusselt number for the
fully developed thermal region can be described as a
function of Dn?Pr in case of small Dean numbers only.
For Dn > 20 the Reynolds and d/D dependency of the
asymptotic Nusselt numbers appeared not to be
described by the Dean number as suggested by Dravid
[8], Akiyama and Cheng [11-13] and Kalb and
Seader [15, 16].

Secondly the Prandtl dependency of the asymptotic
Nusselt number appeared to be described by Pr'/® for
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all experiments, which is in agreement with the ex-
perimental results of Dravid [8]. This was not found
by Seban and McLanghlin {7] and Bell and Singh
[9], who both give a Prandtl dependency of Pri/3,
which was found from our experiments only to be the
case in the thermal entry region.

Finally, for the length of the thermal entry region,
which has been defined as the region where the heat
transfer differs more than 15% from the asymptotic

value, a rough relation has been found:
z/d < 20(d/D)y” 3 (Pr)*? (23)

or
Gz 2 5%1072Dn Py, 24)

From equation (23} it can be concluded that the
thermal entry length is mainly determined by a certain
number of secondary fow circulations and little by the
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effect of thermal diffusivity, as it is in straight tubes.
Depending on the values of Re, Prandtl and d/D the
thermal entry length was 20-90% smaller than in
straight tubes.

(¢} Experimental results with the boundary condition
of a constant wall temperature
The overall Nusselt numbers obtained have been
compared with equation (17) integrated over the tube
length:

1(*—  (032+34D
Nw=1 f(, Nudz = (0.86—0.8d/D>

X Reo.5Pr0.33(d/L)0.14+O.Sd/D (25)

This relation however neglects non-isoviscous effects.
The results for different oils are given in Figs. 9 and 10.
It appeared that the effect of the non-isoviscous flow
on the heat transfer could not be described by the
Sieder-Tate connection (<n)/y,,)°1*

The temperature depending appeared to be larger
than predicted by this correction. As can be seen from
Fig. 10, the results are clearly affected by the fluid inlet
temperature. On the other hand, no significant differ-
ences were found between the silicon oils and the vitrea
oil with a more temperature dependent viscosity. In
case of not too large temperature differences (T;
= 60°C) the overall Nusselt numbers obtained show
reasonable agreement with equation (25). Therefore it
may be concluded that there is little effect of the kind of
boundary condition on the heat transfer. However, the
heat-transfer coefficients will be strongly effected by
the absolute temperature differences between tube wall
and fluid.

SUMMARY AND CONCLUSIONS

From the results of this study it has appeared that
only for low values of the Dean number (Dn < 20) the
dimensionless group Dn?Pr is characteristic for the
heat transfer.

For Dn> 20 it has been shown that the heat-

transfer coefficient in the fully developed thermal
region is directly related to the mean axial shear rate at
the tube wall. For 20 < Dn < 100 it is shown that the
effect of the value of the diameter ration d/D can be
neglected for the fully developed thermal region, the
Nusselt number can be described as a function of the
group Re?Pr only.

For all cases with [Dn?Pr]'/? > 100 the Nusselt
number in the fully developed thermal region is
proportional to Prl/s.

For the thermal entry region the Prandtl de-
pendency of the Nusselt number appeared to be better
described by Pr'/3, It has been found that the length of
the thermal entry region is mainly determined by a
certain number of secondary flow circulation nec-
essary to establish the temperature distribution.

A comparison of the overall heat-transfer coef-
ficients in case of a constant wall temperature and a
constant averaged heat flux shows the effect of the
boundary condition to be small, provided the flow can
be considered as isoviscous. Thereby it has been found
that the non-isoviscous flow effects on the heat transfer
is larger than predicted by the Sieder—Tate correction.
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CONVECTION THERMIQUE LAMINAIRE DANS DES TUBES EN SERPENTIN

Résume—11 s’agit d’une étude expérimentale et théorique de la convection thermique dans les tubes cintres
hélicoidalement. Les expériences sont relatives a des rapports du diamétre du tube au diamétre du serpentin
variant de 1/100 4 1/10, 4 un nombre de Prandtl allant de 10 4 500 et & des nombres de Reynolds compris entre
20 et 4000. Le transfert de chaleur a été étudié pour deux conditions aux limites: avec un flux thermique
circonférentiel moyen constant et avec une température pariétale constante. L’attention a été portée sur le
transfert thermique dans la région dentrée aussi bien que dans la région de [’tablissement de régime
thermique. Les résultats obtenus et les formules proposées sont expliquées en relation avec la configuration
de Pécoulement.

LAMINAR KONVEKTIVER WARMEUBERGANG IN SPIRALFORMIG
GEWICKELTEN ROHREN

Zusammenfassung—Eine experimentelle und theoretische Studie zur Bestimmung des konvektiven
Wirmeiibergangs in  Spiralrohren  wurde  durchgefiihrt. Die  Versuche  wurden  fiir
Rohrdurchmesser/Wirbeldurchmesser-Verhiltnisse von 1/100 bis 1/10, Prandti-Zahlen von 10 bis 500 und
Reynolds-Zahlen von 20 bis 4000 durchgefiihrt. Der Wirmeiibergang wurde fiir zwei Randbedingungen
untersucht, einerseits fiir einen gleichfdrmigen, in Umfangsrichtung gemittelten Warmestrom und anderer-
seits fiir konstante Wandtemperatur. Besonders beachtet wurde der Wérmeiibergang sowohl in der
thermischen Einlaufzone als auch im Gebiet thermisch vollstindig ausgebildeter Strémung. Die gewonnenen
Ergebnisse und die vorgeschlagenen Beziehungen konnten aus dem Stromungsverhalten erklirt baw. daraus
abgeleitet werden.

MEPEHOC TEMJIA JAMWHAPHON KOHBEKLIMEN B CINIUPAJIBHBIX TPYBKAX

AHRoTanuA — [poBeaeHO YKCNEPUMEHTAIBHOE U YUCICHHOE HCCIEI0BAHNE KOHBEKTUBHOTO NEPEHOCA
Tenna B CIIMPanbHbix TPYyOKax. DKCNEPUMEHTB! MPOBOIMITUCE MPH OTHOLIEHUAX AXAMETpa TPYOKM K
AMAMETpY ChMpanu pasHbix, 1/100-1/10, uucnax Tlpauaris B auanasone [0-500 u umchax
Pelinonsaca B auanaizose 20-4000. Uccienosancs TenooOMeH A OBYX TDAHU4YHLIX YCIIOBUR:
OIHOPOIHOTO MO OKPYXHOCTY TENJIOBOTO MOTOKA M NOCTOAHHOM TemmepaTypst cTedku. Ocoboe
BHMMaHUe 06panianocs Ha MEPEHOC TeNJa B TEMIIOBOM HA4alibHOM yYacTke, a Taxke B obaacTy
CTaGUAN3HPOBAHHOTO Ternnoobmena. ITonyueHHbIe Pe3ynbTaAThl H COOTHOIIEHAS MOXKHO OOBACHUTE,
UCXO5 U3 XapakTepa TeHeHUs.



